【当前热闻】十倍提升大模型通信性能!腾讯云首次完整披露自研星脉高性能计算网络
AIGC的爆发除了带来算力上的挑战,对网络的要求也达到了前所未有的高度。
(资料图)
6月26日,腾讯云首次对外完整披露自研星脉高性能计算网络:星脉网络具备业界最高的3.2T通信带宽,能提升40%的GPU利用率,节省30%~60%的模型训练成本,为AI大模型带来10倍通信性能提升。基于腾讯云新一代算力集群HCC,可支持10万卡的超大计算规模。
腾讯云副总裁王亚晨表示:“星脉网络是为大模型而生。它所提供的大带宽、高利用率以及零丢包的高性能网络服务,将助力算力瓶颈的突破,进一步释放AI潜能,全面提升企业大模型的训练效率,在云上加速大模型技术的迭代升级和落地应用。”
构建大模型专属高性能网络,提升40%GPU利用率
AIGC的火爆带来AI大模型参数量从亿级到万亿级的飙升。为支撑海量数据的大规模训练,大量服务器通过高速网络组成算力集群,互联互通,共同完成训练任务。
大集群不等于大算力,相反,GPU集群越大,产生的额外通信损耗越多。大带宽、高利用率、信息无损,是AI大模型时代网络面临的核心挑战。
千亿、万亿参数规模的大模型,训练过程中通信占比最大可达50%,传统低速网络的带宽远远无法支撑。同时,传统网络协议容易导致网络拥塞、高延时和丢包,而仅0.1%的网络丢包就可能导致50%的算力损失,最终造成算力资源的严重浪费。
基于全面自研能力,腾讯云在交换机、通信协议、通信库以及运营系统等方面,进行了软硬一体的升级和创新,率先推出业界领先的大模型专属高性能网络——星脉网络。
在硬件方面,星脉网络基于腾讯的网络研发平台,采用全自研设备构建互联底座,实现自动化部署和配置。
在软件方面,腾讯云自研的TiTa网络协议,采用先进的拥塞控制和管理技术,能够实时监测并调整网络拥塞,满足大量服务器节点之间的通信需求,确保数据交换流畅、延时低,实现高负载下的零丢包,使集群通信效率达90%以上。
此外,腾讯云还为星脉网络设计了高性能集合通信库TCCL,融入定制化解决方案,使系统实现了微秒级感知网络质量。结合动态调度机制合理分配通信通道,可以避免因网络问题导致的训练中断等问题,让通信时延降低40%。
网络的可用性,也决定了整个集群的计算稳定性。为确保星脉网络的高可用,腾讯云自研了端到端的全栈网络运营系统,通过端网立体化监控与智能定位系统,将端网问题自动定界分析,让整体故障的排查时间由天级降低至分钟级。同时,大模型训练系统的整体部署时间从19天缩减至4.5天,保证基础配置100%准确。
历经三代技术演进,软硬一体深耕自研
星脉网络全方位的升级背后,是腾讯数据中心网络历经三代技术演进的成果。
在腾讯发展初期,数据中心网络流量主要由用户访问数据中心服务器的南北向流量构成,网络架构以接入、汇聚、出口为主。这一阶段主要使用了商用网络设备,搭建标准化数据中心网络,支撑QQ在线人数增长超过1亿,服务器规模增长超10万。
随着大数据和云计算的兴起,服务器之间的东西向流量逐渐增多,云租户对网络产生了虚拟化和隔离的要求。数据中心网络架构逐渐演变为同时承载南北向和东西向流量的云网络架构,腾讯云构建了全自研网络设备与管理系统,打造超大规模数据中心网络,服务器规模近200万台。
如今随着AI大模型的出现,腾讯云在国内率先推出高性能计算网络,采用东西向、南北向流量的分离架构。构建了独立的超大带宽、符合AI训练流量特征的网络架构,并配合自研软硬件设施,实现整套系统的自主可控,满足超强算力对网络性能的新需求。
日前,腾讯云发布的新一代HCC高性能计算集群,正是基于星脉高性能网络打造,可以实现3.2T超高互联带宽,算力性能较前代提升3倍,为AI大模型训练构筑可靠的高性能网络底座。
未来,腾讯云还将持续投入基础技术的研发,为各行各业的数智化转型提供有力的技术支撑。
责任编辑:
关键词:
您可能也感兴趣:
今日热点
为您推荐
6月26日 11:20分 爱旭股份(600732)股价快速拉升
财报前瞻 | 黑莓(BB.US)今年以来涨近47% Q1财报会提供更多复苏迹象吗?
全球速讯:乌兰浩特:端午假期旅游市场火爆
排行
最近更新
- 【当前热闻】十倍提升大模型通信性能!腾讯云首次完整披露自...
- 广州酒家董事长徐伟兵计划减持不超过19.7万股
- 韩国政府声称日本核污水排海被认为是最现实的处置方法_世界看...
- 全球速递!实测视觉中国AIGC新功能,图库商对AI的态度正悄悄改变
- 朗迪集团: 目前公司已开通“朗迪集团”微信公众号,暂未开通...
- VTECH HOLDINGS(00303)根据股份购买计划发行18万股
- 昆明上榜“2023避暑旅游优选地”城市
- 环球观速讯丨大盘全天低开低走,AI概念股持续大跌
- 网易开放世界武侠手游《逆水寒》开启下载,6 月 30 日全平...
- 天天快播:焦炭期货主力合约跌超5%,焦煤期货主力合约跌6%
- 天气担忧再起,美豆优良率大幅下滑!蛋白粕大幅反弹
- 2023年浙江台州市区中考普通高中录取分数线
- 千亿商誉压顶,募资650亿,195亿用来还债,先正达把A股当提款...
- 2023年9月甘肃计算机一级报名时间及报名入口
- 可利邦联合浪潮信息:以服务器+存储筑基,加速金融隐私计算发展
- 北京延庆集结全域旅游资源赴津门
- 全球即时:大连甘井子区:科技创新赋能产业高质量发展
- 每日快报!年轻人沉迷刮刮乐,笑着进去,哭着出来
- 金融壹账通港股跌9.45%
- 交银理财稳享固收精选2个月定开202001B年内跌5.14% 天天热讯
- C视觉·每日一图丨全球最长!“宜宾造”智轨商业运营线通车(...
- 当前热议!31省份高考分数线来了!
- 连云港2023年一级建造师报考条件及专业要求
- 小米13 Ultra摄影套装出新配色 白色版要来了
- 高考生喊话马化腾后续来了!腾讯QQ空间已改回老版 网友:上...
- 主动靠前精准服务 南京市市场监管局开展“送标准进企业”活动
- 当前速看:宣城市市场监管局发布夏季预防食源性疾病提示
- 小学生家庭文明公约内容简写_小学生家庭文明公约内容-当前速递
- 多地开展禁毒宣传活动 提高大众识毒、防毒、拒毒能力_世界播资讯
- 世界快消息!经期月经量大怎么办_月经量大怎么办